{{ :cg:pbr.png?600 |}} ====== 1.Microfacet微面元 BRDF ====== {{ :cg:microfacet.png |}} 在所有的微面元中,仅仅只有红色的面元即h的方向才能被v看到,h被称为半矢量$\mathrm{h}=\frac{\mathrm{l}+\mathrm{v}}{\left | \mathrm{l}+\mathrm{v} \right |}$,D和G都是影响h这个参数,Microfacet的brdf的表达式如下 $$f (\mathrm{l},\mathrm{v})=f_d(\mathrm{l},\mathrm{v})+\frac{F(\mathrm{v},\mathrm{h})D(\mathrm{h})G(\mathrm{l},\mathrm{v},\mathrm{h})}{4(\mathrm{n}\cdot \mathrm{l})(\mathrm{n}\cdot \mathrm{v})} $$ 下面会逐项分析这个表达式里面的参数 ====== 2.菲涅尔F ====== 菲涅尔表示入射和折射的比例,这个数值和材质本身有关系也和光线入射角有关系 $$ L_R=R_F(\theta_i)L_l $$ 菲涅尔的计算公式[Schick,1994] $$ R_F(\theta_i)\approx R_F(0^{\circ})+(1-R_F(0^{\circ}))(1-\cos\theta_i)^5 $$ $R_F(0^{\circ})$表示入射光垂直于表面时菲涅尔的反射率的值,下图展示了菲涅尔在金属和非金属下不同角度的数值 {{ :cg:fresnel.jpg |}} ====== 3.法线分布项D ====== D就是法线的分布,简单的说就是h偏离法线n的程度,主要是由粗糙度决定,直接只用GGX的分布\\ NDF(Normal Distribution Function) GGX $$ \alpha = Roughness^2 $$ $$ D(h)=\frac{\alpha ^2}{\pi ((\mathrm{n} \cdot \mathrm{h})^2(\alpha ^2-1)+1)^2} $$ ====== 4.遮挡项G ====== G称为双向阴影遮挡函数,也就是v会被其他的微面元遮挡,G主要受粗糙度影响,是用Smith GGX分布\\ Geometry Factor Smith GGX $$ \alpha = Roughness^2 $$ $$ G_{GGX}(\mathrm{k})=\frac{2(\mathrm{n} \cdot \mathrm{k})}{(\mathrm{n} \cdot \mathrm{k}) + \sqrt{\alpha^2+(1-\alpha^2)(\mathrm{n} \cdot \mathrm{k})^2 }} $$ $$ G(\mathrm{l},\mathrm{v},\mathrm{h})=G_1(\mathrm{l})G_1(\mathrm{v}) $$ ====== 5.漫反射Diffuse ====== Lambert模型 $$ f_d(\mathrm{l},\mathrm{v}) = \frac{c_\mathrm{diff}}{\pi} $$ ====== 6.UE4材质模型 ====== ==== 6.1 Basecolor ==== Basecolor就是材质的基础颜色,也就是材质的漫反射颜色,即漫反射公式中的$c_{diff}$,漫反射颜色的本质是,光线在照射材质后,光线进入材质内部经过复杂散射后出来的光,这个散射后的光丧失了方向。与之对应的是高光,高光直接在材质上反射,映射的直接是光的颜色 ==== 6.2 Roughness ==== 粗糙度是影响D和G的重要参数 ==== 6.3 Metallic ==== 金属是个很特殊的参数,影响的是漫反射diff和菲涅尔项F,当材质为纯金属的时候原来漫反射为0(可理解为纯金属的时候进入材质的的光和金属发生光电反应,全部以热能的形式消耗掉),而此时$F_0$就是diff。\\ 非金属的情况,当完全是非金属的时候,漫反射就是diff,此时$F_0$就是下面的Specular ==== 6.4 Specular ==== 由金属的参数性质可知,Specular只有在非金属的情况才生效,根据非金属的菲涅尔的图标可以看出$F_0$的范围大致在0.03到0.08之间\\ \\ \\ 根据6.3和6.4可得出 $$ diffuseColor = baseColor*(1-metallic) $$ $$ specularColor = mix(0.08*specular,baseColor,metallic) $$ ====== 7.精确光源 ====== $$ f=f_d+f_r $$ $$ =\frac{c_{diff}}{\pi } + \frac{FDG}{4 (n\cdot l) (n \cdot v)} $$ $$ =\frac{c_{diff}}{\pi } + (F_0+(1-F_0)(1-v\cdot h)^5)(\frac{\alpha ^2}{\pi ((\mathrm{n} \cdot \mathrm{h})^2(\alpha ^2-1)+1)^2})((\frac{2(\mathrm{n} \cdot \mathrm{l})}{(\mathrm{n} \cdot \mathrm{l}) + \sqrt{\alpha^2+(1-\alpha^2)(\mathrm{n} \cdot \mathrm{l})^2 }})(\frac{2(\mathrm{n} \cdot \mathrm{v})}{(\mathrm{n} \cdot \mathrm{v}) + \sqrt{\alpha^2+(1-\alpha^2)(\mathrm{n} \cdot \mathrm{v})^2 }}))\frac{1}{4 (n\cdot l) (n \cdot v)} $$ $$ =\frac{c_{diff}}{\pi } + (F_0+(1-F_0)(1-v\cdot h)^5)(\frac{\alpha ^2}{\pi ((\mathrm{n} \cdot \mathrm{h})^2(\alpha ^2-1)+1)^2})((\frac{1}{(\mathrm{n} \cdot \mathrm{l}) + \sqrt{\alpha^2+(1-\alpha^2)(\mathrm{n} \cdot \mathrm{l})^2 }})(\frac{1}{(\mathrm{n} \cdot \mathrm{v}) + \sqrt{\alpha^2+(1-\alpha^2)(\mathrm{n} \cdot \mathrm{v})^2 }})) $$ \\ \\ $$ L_r=f*L_i*\cos\theta =f*\frac{E}{r^2}*(n \cdot l) $$ precision highp float; varying vec3 vNormal;//法线 varying vec3 vPosition;//位置 uniform vec3 uLightPosition;//点灯光位置 uniform vec3 uLightColor;//点灯光颜色 uniform float uLightRadius;//点灯光半径 uniform vec3 uCamPosition;//摄像机位置 uniform vec3 uBaseColor;//基础色 uniform float uRoughness;//粗糙度 uniform float uMetallic;//金属 uniform float uSpecular;//高光 #define PI 3.14159265359 #define invPI 0.3183098861837697 #define invTWO_PI 0.15915494309 #define saturate(x) clamp(x, 0.0, 1.0) vec3 Diffuse_Lambert( vec3 DiffuseColor ) { return DiffuseColor * (1.0 / PI); } float D_GGX( float Roughness, float NoH ) { float m = Roughness * Roughness; float m2 = m * m; float d = ( NoH * m2 - NoH ) * NoH + 1.0; // 2 mad return m2 / ( PI*d*d ); // 4 mul, 1 rcp } float Vis_Smith( float Roughness, float NoV, float NoL ) { float a = Roughness * Roughness ; float a2 = a*a; float Vis_SmithV = NoV + sqrt( NoV * (NoV - NoV * a2) + a2 ); float Vis_SmithL = NoL + sqrt( NoL * (NoL - NoL * a2) + a2 ); return 1.0 / ( Vis_SmithV * Vis_SmithL ); } vec3 F_Schlick( vec3 SpecularColor, float VoH ) { float Fc = pow( 1.0 - VoH, 5.0 ); return Fc + (1.0 - Fc) * SpecularColor; } float getAttenuation( vec3 lightPosition, vec3 vertexPosition, float lightRadius ) { float r = lightRadius; vec3 L = lightPosition - vertexPosition; float dist = length(L); float d = max( dist - r, 0.0 ); L /= dist; float denom = d / r + 1.0; float attenuation = 1.0 / (denom*denom); float cutoff = 0.0052; attenuation = (attenuation - cutoff) / (1.0 - cutoff); attenuation = max(attenuation, 0.0); return attenuation; } void main(void){ vec3 N = normalize( vNormal ); vec3 V = normalize( uCamPosition - vPosition ); vec3 L = normalize( uLightPosition - vPosition ); vec3 H = normalize(V + L); float NoL = saturate( dot( N, L ) ); float NoV = saturate( dot( N, V ) ); float VoH = saturate( dot( V, H ) ); float NoH = saturate( dot( N, H ) ); vec3 diffuseColor = uBaseColor - uBaseColor * uMetallic; vec3 specularColor = mix( vec3( 0.08 * uSpecular ), uBaseColor, uMetallic ); float attenuation = getAttenuation( uLightPosition, vPosition, uLightRadius ); float D = D_GGX(uRoughness,NoH); float Vis = Vis_Smith(uRoughness,NoV,NoL); vec3 F = F_Schlick(specularColor,VoH); vec3 diffusePoint = Diffuse_Lambert(diffuseColor); vec3 specularPoint = D * Vis * F; vec3 colorPoint = uLightColor * ( diffusePoint + specularPoint ) * NoL * attenuation; vec4 infoUv = vec4(colorPoint * 1.0 ,1.0); gl_FragColor = infoUv; } ====== 8.环境光源 ====== ===== 8.0 蒙特卡洛方法 ===== 对于一个连续函数f,它的积分公式 $$ F=\int_{a}^{b}f(x)dx $$ 对应f的蒙特卡洛积分公式 $$ F^N=\frac{1}{N}\sum_{i=1}^{N}\frac{f(X_i)}{pdf(X_i)} $$ ===== 8.1 基本公式 ===== $$ \int _\Omega L_i(l)f(l,v)\cos\theta _i \mathrm{d}l \approx \frac{1}{N}\sum_{k=1}^{N}\frac{L_i(l_k)f(l_k,v)\cos\theta_l{_k}}{pdf(l_k,v)} $$ $$ pdf=\frac{D(n \cdot h)}{4(v \cdot h)} $$ float3 ImportanceSampleGGX( float2 Xi, float Roughness , float3 N ) { float a = Roughness * Roughness; float Phi = 2 * PI * Xi.x; float CosTheta = sqrt( (1 - Xi.y) / ( 1 + (a*a - 1) * Xi.y ) ); float SinTheta = sqrt( 1 - CosTheta * CosTheta ); float3 H; H.x = SinTheta * cos( Phi ); H.y = SinTheta * sin( Phi ); H.z = CosTheta; float3 UpVector = abs(N.z) < 0.999 ? float3(0,0,1) : float3(1,0,0); float3 TangentX = normalize( cross( UpVector , N ) ); float3 TangentY = cross( N, TangentX ); // Tangent to world space return TangentX * H.x + TangentY * H.y + N * H.z; } float3 SpecularIBL( float3 SpecularColor , float Roughness , float3 N, float3 V ) { float3 SpecularLighting = 0; const uint NumSamples = 1024; for( uint i = 0; i < NumSamples; i++ ) { float2 Xi = Hammersley( i, NumSamples ); float3 H = ImportanceSampleGGX( Xi, Roughness , N ); float3 L = 2 * dot( V, H ) * H - V; float NoV = saturate( dot( N, V ) ); float NoL = saturate( dot( N, L ) ); float NoH = saturate( dot( N, H ) ); float VoH = saturate( dot( V, H ) ); if( NoL > 0 ) { float3 SampleColor = EnvMap.SampleLevel( EnvMapSampler , L, 0 ).rgb; float G = G_Smith( Roughness , NoV, NoL ); float Fc = pow( 1 - VoH, 5 ); float3 F = (1 - Fc) * SpecularColor + Fc; // Incident light = SampleColor * NoL // Microfacet specular = D*G*F / (4*NoL*NoV) // pdf = D * NoH / (4 * VoH) SpecularLighting += SampleColor * F * G * VoH / (NoH * NoV); } } return SpecularLighting / NumSamples; } ===== 8.2 展开优化 ===== $$ \frac{1}{N}\sum_{k=1}^{N}\frac{L_i(l_k)f(l_k,v)\cos\theta_l{_k}}{pdf(l_k,v)} \approx \left ( \frac{1}{N}\sum_{k=1}^{N}L_i(l_k) \right )\left ( \frac{1}{N}\sum_{k=1}^{N} \frac{f(l_k,v)\cos\theta_l{_k}}{pdf(l_k,v)}\right ) $$ ===== 8.3 前部优化 Pre-Filtered Environment Map ===== 对于前半部分,做如下处理,假定 n=v=r $$ \frac{1}{N}\sum_{k=1}^{N}L_i(l_k) \approx \mathrm{Cubemap. Sample (r, mip) } $$ float3 PrefilterEnvMap( float Roughness , float3 R ) { float3 N = R; float3 V = R; float3 PrefilteredColor = 0; const uint NumSamples = 1024; for( uint i = 0; i < NumSamples; i++ ) { float2 Xi = Hammersley( i, NumSamples ); float3 H = ImportanceSampleGGX( Xi, Roughness , N ); float3 L = 2 * dot( V, H ) * H - V; float NoL = saturate( dot( N, L ) ); if( NoL > 0 ) { PrefilteredColor += EnvMap.SampleLevel( EnvMapSampler , L, 0 ).rgb * NoL; TotalWeight += NoL; } } return PrefilteredColor / TotalWeight; } ===== 8.3 后部优化 ===== ==== 8.3.1 基本做法 ==== $$ \frac{1}{N}\sum_{k=1}^{N} \frac{f(l_k,v)\cos\theta_l{_k}}{pdf(l_k,v)} = \frac{1}{N}\sum_{k=1}^{N} S $$ 分解S $$ S = \frac{DFV \cos\theta }{pdf}$$ 对F进行分解处理 $$ F = F_0 +(1-F_0)(1-\cos\theta)^5 = F_0(1-(1-\cos\theta)^5) + (1-\cos\theta)^5 $$ $$ = F_0(1-(1-v\cdot h)^5) + (1-v\cdot h)^5 = F_0(1-F_c) + F_c $$ 其中$ F_c = (1-v\cdot h)^5 $\\ 处理pdf $$ pdf = \frac{D(n \cdot h)}{4(v \cdot h)}$$ 对S最终分解处理 $$ S= \frac{4DFV(n \cdot l)(v \cdot h)}{D(n \cdot h)} = F \frac{4V(n \cdot l)(v \cdot h)}{(n \cdot h)}$$ $$ = F_0(1-F_c)\frac{4V(n \cdot l)(v \cdot h)}{(n \cdot h)} + F_c\frac{4V(n \cdot l)(v \cdot h)}{(n \cdot h)} $$ 此时给定$NOV$和$Roughness$,$Roughness$在重要性采样中确定$h$,那么$n、v、h$都有即可推算出$l$,那么上述式子的结果就只有和$NOV、Roughness、F_0$相关\\ 通过数学技巧可以写成$F_0*Scale+Offset,Scale和Offset$这种线性的和Roughness、NoV相关,可以通过查表或者LUT的方式快速计算 float Vis_SmithJointApprox(float Roughness, float NoV, float NoL) { float a = Roughness * Roughness; float Vis_SmithV = NoL * (NoV * (1.0 - a) + a); float Vis_SmithL = NoV * (NoL * (1.0 - a) + a); return 0.5 / (Vis_SmithV + Vis_SmithL); } Vector2 IntegrateBRDF(Vector2 Random, float Roughness, float NoV){ Vector3 V; V.x = sqrt(1.0 - NoV * NoV);// sin; V.y = 0; V.z = NoV;// # cos float A = 0; float B = 0; int NumSamples = 128; for (int i = 0;i < NumSamples;i++){ Vector2 E = Hammersley(i, NumSamples, Random); Vector3 H = ImportanceSampleGGX(E, Roughness); Vector3 L = H * (2 * V.dot(H)) - V; float NoL = saturate(L.z); float NoH = saturate(H.z); float VoH = saturate(V.dot(H)); if (NoL > 0){ float Vis = Vis_SmithJointApprox(Roughness, NoV, NoL); //#Incident light = NoL //#pdf = D * NoH / (4 * VoH) //#NoL * Vis / pdf float NoL_Vis_PDF = NoL * Vis * (4 * VoH / NoH); float Fc = pow(1 - VoH, 5); A += (1 - Fc) * NoL_Vis_PDF; B += Fc * NoL_Vis_PDF; } } return Vector2(A / NumSamples, B / NumSamples); } 最终生成的图片,运行时直接采样图片\\ {{:cg:lut.png|}} ==== 8.3.2 再次优化 ==== LUT的曲线本身是平滑的,所以可以用数学的方式([[math:index#泰勒公式|泰勒公式]])来拟合曲线,下面是UE4的拟合代码 Vector2 EnvBRDFApprox(float Roughness,float NoV){ //# [ Lazarov 2013, "Getting More Physical in Call of Duty: Black Ops II" ] //# Adaptation to fit our G term. Vector4 c0 = Vector4(-1, -0.0275, -0.572, 0.022); Vector4 c1 = Vector4(1, 0.0425, 1.04, -0.04); Vector4 r = c0 * (Roughness) + c1; float a004 = min(r.x * r.x, pow(2, -9.28 * NoV)) * r.x + r.y; Vector2 AB = Vector2(-1.04, 1.04)*(a004) + Vector2(r.z, r.w); return AB; } 用上述的方式,拟合出来的图片可以和上图来对比\\ {{:cg:lut_approx.png|}} ===== 8.4 环境光的Diffuse ===== 直接对原始的环境光图片按照consine分布采样,然后直接累加颜色值,然后重新生成Diffuse的环境光图片,使用的时候,只需要用点的normal去采样这个环境光图片,就是diffuse的光照结果,代码如下 Vector4 DiffuseIBL(Vector2 Random, Vector3 N, BitmapData &img, bool hdr){ Vector4 DiffuseLighting; unsigned NumSamples = 4096 * 2; //for i in range(NumSamples) : for (unsigned int i = 0; i < NumSamples; i++){ Vector2 E = Hammersley(i, NumSamples, Random); Vector3 C = CosineSampleHemisphere(E); Vector3 L = TangentToWorld(C, N); float NoL = saturate(N.dot(L));; //#print("NoL", NoL); if (NoL > 0){ Vector2 uv2 = pos2uv(L); Vector4 result = img.getPixel32Int(uv2.x * img.width, uv2.y * img.height); //#lambert = DiffuseColor * NoL / PI //#pdf = NoL / PI float e = 1.0; if (hdr) { e = result.w - 128.0; e = pow(2, e); } DiffuseLighting.x += result.x * e; DiffuseLighting.y += result.y * e; DiffuseLighting.z += result.z * e; DiffuseLighting.w += 255; } } float Weight = 1.0 / NumSamples; DiffuseLighting = DiffuseLighting * (Weight); return DiffuseLighting; } ---- 至此就是[[https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf|UE4关于物理渲染]]的整个推导流程